Modul	Modulschlüssel	Gruppe	Gruppen ID	Beschreibung	Т	R	TR	SW
Apollon	0x1XXX	Timings & Alarms	0x00	Definiert Parameter für Messungen und Übertragungsverhalten	√	√	√	√
Apollon	0x1XXX	ToF	0x01	Einstellungen zum ToF Sensor	√		√	√
Apollon	0x1XXX	Radar	0x02	Einstellungen zum Radar Sensor		√	√	√
Apollon	0x1XXX	Klappenöffnungsdetektion	0x03	Einstellungen zum Accelomerter	√	√	√	√
Apollon	0x1XXX	Bewegung und Vibrationserkennung	0x04	Einstellungen für Tracking in Motion und Vibrationsmustererkennung	√	√	√	✓

Radar-Voreinstellung bei Inbetriebnahme

"Liquid" (für Flüssigkeitsmessungen): tmod = 2 Beispiel S-XXXX-TR-ACC

"Solid" (für Feststoffe): tmod = 0 Beispiel S-XXXX-SW-TR-ACC

Bei Messung von Gewässern muss sichergestellt werden, dass sich Wasser im Fluss befindet.

Auf der letzten Seite befinden sich FAQs.

Tabellen für Produktübergreifende Module wie LoRaWAN, mioty und Cellular finden Sie in der <u>Generischen NFC und Downlink</u> Dokumentation.

Weitere Informationen zur Konfiguration der Sensor-Kommunikation finden Sie je nach Version in der jeweiligen generischen <u>LoRaWAN®</u>, <u>Mioty®</u> oder <u>Cellular</u> Dokumentation.

		APOLLON: GRUPPE TIMIN	NGS & ALARM 0x	(00 (T, I	R, TR, SW)		
Ressourcen	Ressourcen ID	Beschreibung	Schlüssel (NFC/BLE)	Min	Max	Werks- einstellung	Einheit	Modul- schlüssel
MESSPERIODE	0x00	Gibt die Periode an, in der die Messwerte erfasst werden. 60 Minuten heißt, dass immer nach 60 Minuten eine Messungen durch den Sensor durchgeführt wird.	period	1	660	60	min	XXX1
ÄNDERUNG FÜLLSTAND ABSOLUT	0x01	Gibt an, um wie viel sich der Füllstand im Vergleich zur letzten Sendung absolut ändern muss, damit eine ALARM Sendung ausgelöst wird. Diese Sendung wird unabhängig vom normalen Sendeintervall durchgeführt. Bezieht sich immer auf den Hauptmesswert.	delta	30	2000	200	mm	XXX1
REGULÄRES SENDEINTERVALL	0x02	Anzahl der bis zur Übertragung durchgeführten Messungen.	every oder pause (je nach Version)	1	24	6		XXX1
MASTER VALUE RESSOURCE	0x03	0: ToF entspricht ToF Algo Ressource1: Radar	mval	0	1	1		XXX1
TEMPERATUR HIGH	0x04	Gibt die Temperatur an, ab dem ein Temperaturalarm ausgelöst wird.	thi	0	100	70	°C	XXX1

	APOLLON: GRUPPE TOF EINSTELLUNGEN 0x01 (T, TR, SW)										
Ressourcen	Ressourcen ID	Beschreibung	Schlüssel (NFC/BLE)	Min	Max	Werks- einstellung	Einheit	Modulschlüssel			
ToF ALGO RESSOURCE	0x02	Primärer ToF Algorithmus: • 0:Kein Histogramm Modus • 1:Mit Histogramm Modus • 2: ADVANCED FEATURE	algo	0	2	2		XXX1			

		APOLLON: GRUPPE RADAR	R EINSTELLUI	NGEN (0x02 (R,	TR, SW)		
Ressourcen	Ressourcen ID	Beschreibung	Schlüssel (NFC/BLE)	Min	Max	Werks- einstellung	Einheit	Modulschlüssel
MINIMALE MESSDISTANZ RADAR	0×00	Beschreibt die minimale erforderliche Distanz, ab der eine Messung durchgeführt wird.	rsta	50	3000	150	mm	XXX1
MAXIMALE MESSDISTANZ RADAR	0×01	Beschreibt die maximale Distanz, bis zu der gemessen wird.	rend	50	10000	5000	mm	XXX1
GRENZWERT RADAR	0x02	Gibt den Grenzwert an, über dem die Signal-Peaks des Sensors liegen müssen, um erkannt zu werden (nur für <i>tmod</i> =2).	rtre	400	10000	2000		XXX1
RADAR SORT MODE	0x03	Legt die Sortierlogistik der detektieren Ziele fest:	rsor	0	2	0		XXX1
RADAR WAVELET LENGTH	0x04	ADVANCED: Pulslänge (Radar Pulse Duration), wie lange wird das Signal ausgesendet; wird automatisch vom Sensor ausgewählt	wav	1	5	2		XXX1
RADAR RANGE THRESHOLD MODE	0×05	Modus zur Schwellwertanpassung der Werte • 0: Phase Variance Modus: Modus für Stückgüter und Smart Waste (rstart und rend werden nicht berücksichtigt, stattdessen	tmod	0	2	2: wenn Liquid voreingestellt 0: sonst		XXX1

		 muss tlpr richtig eingestellt werden). 1: Static Threshold Mode (statischer Grenzwerte), es werden nur Objekte betrachtet, die die Radar Cross Section rcs besitzen. 2: Dynamic Threshold Algorithm CFAR 					
RADAR RCS THRESHOLD	0x06	Grenzwert für Static Threshold Mode	rcdt	-10	40	0	XXX1
RADAR SIGNAL QUALITY	0x07	Verstärkung: Je höher sq, desto weitere Distanzen können empfangen werden, der Stromverbrauch steigt. Wenn sq zu hoch eingestellt, dann kann der Sensor in Sättigung geraten.	sq	-10	30	10	XXX1
RADAR CFAR SENSITIVITY	0x08	Sensitivität des CFAR Algorithmus. Die Radar CFAR Sensitivity (CFAR = Constant False Alarm Rate) beschreibt, wie empfindlich ein Radarzielerkennungssystem auf mögliche Ziele reagiert, während es gleichzeitig versucht, die Rate falscher Alarme konstant zu halten. • Höhere Sensitivität → niedrigere Schwelle → mehr Ziele erkannt, aber auch mehr falsche Alarme, erkennt es auch schwache Reflexionen	cfsn	0	100	50	XXX1

RADAR TL PRESET	0x09	 Niedrigere Sensitivität → höhere Schwelle → weniger Fehlalarme. Trash Level-Logik Voreinstellung 0: RESERVED ADVANCED PROFILE 1: Plastic Waste Bin (dual sweep) bis maximal 1 Meter 2: Plastic Waste Bin (single sweep) bis maximal 1 Meter (Sensitivität und Fehlerwahrscheinlichkeit geringer als im vgl. zu 1) 3: Großer Container bis 3 Meter (dual sweep) 4: Großer Container bis 3 Meter (single sweep, Sensitivität und Fehlerwahrscheinlichkeit geringer als im vgl. zu 1) 	tlpr	0	4	3	XXX1
RADAR TL SEQ LEN	0x0A	ADVANCED: Radar Sequence Length	tlsl	0	16	0	XXX1
RADAR TL MED LEN	0x0B	ADVANCED: Radar Median Length	tlml	0	8	0	XXX1
RADAR TL VAR THR	0x0C	ADVANCED: Grenzwert der Phasenvarianz	tlvt	0	100	0	XXX1
RADAR FILTER TYPE	0x0D	Radar Slow Filter Type (deaktiviert bei Liquid): Filter werden auf den Master Value angewendet • 0: kein Filter	rsft (früher tlft)	0	2	0: wenn Liquid voreingestellt 2: sonst	XXX1

		1: ADVANCED Filter2: AVG Filter					
RADAR TL SLOW FILTER DEPTH	0x0D	Filtertiefe: Anzahl der historischen Werte, die für den Filter Algorithmus verwendet werden.	rsfd (früher tlfd)	0	24	3	XXX1
RADAR CFAR NORM	0x0F	ADVANCED: Korrektur der rcs Werte. Wenn Doppelreflexionen auftreten dann folgende Parameter einstellen • 0: Keine Korrektur • 1: Schwache Korrektur (bei Flächen) • 2: Starke Korrektur	cfnr	0	2	2	XXX1

		APOLLON: GRUPPE AC	CELOMETER	0x03 (Γ, R, TR,	SW)		
Ressourcen	Ressourcen ID	Beschreibung	Schlüssel (NFC/BLE)	Min	Max	Werks- einstellung	Einheit	Modulschlüssel
ABKLINGZEIT	0x00	Gibt eine Zeitspanne in Sekunden an, in der nach dem Auslösen einer Öffnung eine weitere Öffnung nicht noch einmal ausgelöst werden kann (entprellt die Öffnungen). Als Referenzwert dient die letzte gezählte Öffnung.	ocool	1	600	120	sec	XXX1
ALARM NACH	0x01	Gibt an, wie lange der Deckel in Sekunden geöffnet sein muss, bis ein Alarm ausgelöst wird.	oaaf	60	3600	900	sec	XXX1
ALARM ÖFFNUNGSDE- TEKTION	0x02	Aktiviert oder deaktiviert den Öffnungs-Alarm: 0: deaktiviert 1: aktiviert	osrc	0	1	1		XXX1
ALARM OFFENSTEHENDE KLAPPE	0x04	Gibt an, ob bei offen stehendem Container ein Alarm nach der Zeit "ALARM NACH" ausgelöst wird 0: Alarm nicht aktiv 1: Alarm aktiv	oaen	0	1	0		XXX1

Es kann entweder Apollon Gruppe 0x03 oder die Gruppe 0x04 genutzt werden! Die Gruppen aktivieren sich gegenseitig.

		APOLLON: BEWEGUNG UN	ND VIBRATIO	ONSERI	KENNUN	IG 0x04		
Ressourcen	Ressourcen ID	Beschreibung	Schlüssel (NFC/BLE)	Min	Max	Werks- einstellung	Einheit	Modulschlüssel
MOVE MODE	0×00	Gibt an, welcher Modus (Tracking on Activity Modus oder Vibrationserkennung) aktiviert ist:	Imode	0	8	O		1111

		Beendigung einer Aktivität wird die Lokalisierung durchgeführt. 6: Tracking on Inactivity and Ongoing: Die Lokalisierung erfolgt, wenn die Aktivität im Gange ist und die Aktivität beendet wurde. 7: Tracking on Start, Inactivity and Ongoing: Die Lokalisierung erfolgt, wenn die Aktivität startet, im Gange ist und die Aktivität beendet wurde. 8: Vandalismusdetektion und Vibrationsmusterkennung.						
MOVE ACTIVITY THRESHOLD	0x01	Beschreibt, ab welcher Beschleunigung eine Aktivität als Aktivität gezählt und aufgezeichnet wird. Für die Vandalismuserkennung Move Mode = 8 ist das die Schwelle für einen Stoß.	moat	100	2000	400	mg	1111
MOVE ONGOING TIME	0x02	Gibt die Zeit an, die zwischen zwei Übertragungen und Lokalisierungen vergehen, während eine Aktivität andauert.	mont	1	1440	10	min	1111
MOVE INACTIVITY TIME	0x03	Beschreibt die Zeit zwischen dem Zeitpunkt, ab dem eine Aktivität endet und dem	moit	1	1440	5	min	1111

		Lokalisieren/Übertragen der Daten.					
MOVE IMPACT MAX	0x04	Anzahl der Schläge/Stöße. Wird diese Anzahl erreicht, ohne dass "Move Inactivity Time" zwischen den Schlägen abläuft, wird ein Vandalismusalarm ausgelöst.	miom	1	1440	4	1111

Es kann entweder Apollon Gruppe 0x03 oder die Gruppe 0x04 genutzt werden! Die Gruppen aktivieren sich gegenseitig.

FAQ:

1. "Der Sensor gibt nur ein einziges und keine weiteren Echos zurück. rd 2, ra 2. Rd 3, ra 3 sind 0."

Dieses Verhalten ist **keine Fehlfunktion**, sondern je nach Anwendung oder Umgebungsbedingungen **völlig normal** - und in vielen Fällen sogar **erwünscht**. Der Sensor hat in diesem Fall **ein klares, dominantes Ziel** erkannt, das stark genug reflektiert, um alle anderen möglichen Echos zu unterdrücken oder als irrelevant einzustufen.

Ein einzelnes, stabiles Echo bedeutet:

- Hohe Messsicherheit bei klarer Oberfläche oder homogener Füllhöhe
- Geringe Störreflexionen durch Behälterwände, Einbauten oder Oberflächenstrukturen
- Optimale Bedingungen für eine zuverlässige Füllstand- oder Abstandsmessung

Nur wenn mehrere relevante Echos erwartet werden (z. B. bei komplexen Tankgeometrien oder überhängenden Strukturen) und dauerhaft fehlen, kann eine **Überprüfung der Sensorausrichtung, Radarparameter oder Umgebung** sinnvoll sein.

Für die Einstellung für "Smart Waste" (tmod = 0) ist immer nur ein Echo verfügbar, da das erste detektierte Objekt erfasst wird.

- 2. Ich möchte den Sensor gerne vom Smart Waste Profile auf Liquid Profil und zurück einstellen. Wie geht das?
 - "Smart Waste" oder Stückgüter Profil: *tmod* = 0
 - Liquid Profil: tmod = 2

3. <u>Der Sensor misst zu viele Doppelreflexionen</u>

Doppelreflexionen beim Radar (auch Mehrwege-Echos oder Multipath-Reflexionen) entstehen, wenn das Radarsignal nicht direkt vom Ziel zurückkehrt, sondern über Umwege reflektiert wird, z. B. über Wände, Böden, Behälterstrukturen oder Einbauten.

- cfnr = 1
- cfnr = 2 (bei vielen Doppelreflexionen)

4. Der Sensor keine oder "0" Werte

- cfsn erhöhen
- sq erhöhen

Wenn der Sensor dauerhaft keine Messwerte liefert oder konstant **0** anzeigt, kann das verschiedene Ursachen haben. Dieses Verhalten ist **nicht zwangsläufig ein Defekt**, sondern häufig auf **konfigurations- oder umgebungsbedingte Faktoren** zurückzuführen:

Kein Ziel im Sichtfeld

- → Prüfen, ob sich **innerhalb der konfigurierten Reichweite** ein reflektierendes Objekt befindet.
- → Bei sehr großen Entfernungen oder schlecht reflektierenden Oberflächen (z. B. Schaum, offenes Gitter) kann die Radarrückstreuung zu schwach sein.

Falsche Ausrichtung des Sensors

- → Sensor ggf. **nicht korrekt auf die Zieloberfläche** ausgerichtet (z. B. zu stark geneigt oder abgewinkelt).
- → Die Hauptstrahlrichtung sollte möglichst **senkrecht** zur Zieloberfläche stehen.

• Ungeeignete Radarparameter

→ Prüfen Sie die Einstellungen wie: Radarfiltertyp (z. B. für Flüssigkeit oder Feststoff), Empfindlichkeit / Gain, Minimale und maximale Reichweite (z. B. r_min, r_max)

• Störende Reflexionen oder Abschattung

- → Metalleinbauten, Abdeckungen, Gitter oder Wandnähe können das direkte Echo blockieren.
- → In diesem Fall wird evtl. kein gültiger Messwert erkannt.

• Datenformat oder Kommunikationsfehler

- → Stellen Sie sicher, dass die Messdaten korrekt ausgelesen und interpretiert werden.
- → Ein Wert von "0" kann auch bedeuten: kein gültiger Messwert empfangen (abhängig vom Protokoll oder Datenparser).