

JUNO BSX BETRIEBSSTUNDENZÄHLER BETRIEBSANLEITUNG - ZUSÄTZLICHE INFORMATIONEN DE

Danke, dass Sie sich für den Apollon Sensor von Sentinum entschieden haben. Bitte lesen Sie die folgende Betriebsanleitung aufmerksam durch, um Schäden am Sensor, von Ihnen und der Umwelt abzuwenden.

Juno BSX Betriebsstundenzähler Betriebsanleitung - Zusätzliche Informationen DE

Inhaltsverzeichnis

1.	Produktversionen	. 1
2.	BM Versionen - elektrisches Magnetfeldsensor	. 2
	2.1. Zusätzliche Sicherheitshinweise	. 2
	2.2. Technische Funktionsweise	. 3
	2.3. Einsatzmöglichkeiten und Anwendungsbeispiele	. 3
	2.4. Hinweise zur Anbringung	. 6
	2.5. Störeinflüsse	. 7
3.	Kennzeichnung und Zertifizierung	. 8

1. PRODUKTVERSIONEN

ARTIKEL CODE	FEATURES
S-JUNO-IX-LOEU-BSX-BM	INDUSTRIAL JUNO IP69k Betriebsstundenzähler mit Magnetfeldsensor LoRaWAN®
S-JUNO-IX-MIOTY-BSX-BM	INDUSTRIAL JUNO IP69k Betriebsstundenzähler mit Magnetfeldsensor mioty®
S-JUNO-IX-NBM1-BSX-BM	INDUSTRIAL JUNO IP69k Betriebsstundenzähler mit Magnetfeldsensor Cellular
S-JUNO-IX-LOEU-BSX-BM-TH	INDUSTRIAL JUNO IP67 Betriebsstundenzähler und TH Sensor, Temperatur und rel. Luftfeuchtigkeit mit Magnetfeldsensor LoRaWAN® - nur auf Anfrage und MOQ erhältlich -
S-JUNO-IX-MIOTY-BSX-BM-TH	INDUSTRIAL JUNO IP67 Betriebsstundenzähler und TH Sensor, Temperatur und rel. Luftfeuchtigkeit mit Magnetfeldsensor mioty® - nur auf Anfrage und MOQ erhältlich -
S-JUNO-IX-NBM1-BSX-BM-TH	INDUSTRIAL JUNO IP67 Betriebsstundenzähler und TH Sensor, Temperatur und rel. Luftfeuchtigkeit mit Magnetfeldsensor Cellular - nur auf Anfrage und MOQ erhältlich -
S-JUNO-IX-LOEU-BSX	INDUSTRIAL JUNO IP69k Betriebsstundenzähler und TH Sensor, Temperatur und rel. Luftfeuchtigkeit mit Magnetfeldsensor LoRaWAN®
S-JUNO-IX-MIOTY-BSX	INDUSTRIAL JUNO IP69k Betriebsstundenzähler mit Vibrations- und Magnetfeldsensor mioty®
S-JUNO-IX-NBM1-BSX	INDUSTRIAL JUNO IP69k Betriebsstundenzähler mit Vibrations- und Magnetfeldsensor Cellular
S-JUNO-IX-LOEU-BSX-TH	INDUSTRIAL JUNO IP67 Betriebsstundenzähler mit Vibrations- und Magnetfeldsensor LoRaWAN® – nur auf Anfrage und MOQ erhältlich -
S-JUNO-IX-MIOTY-BSX-TH	INDUSTRIAL JUNO IP67 Betriebsstundenzähler mit Vibrations- und Magnetfeldsensor mioty® – nur auf Anfrage und MOQ erhältlich -
S-JUNO-IX-NBM1-BSX-TH	INDUSTRIAL JUNO IP67 Betriebsstundenzähler mit Vibrations- und Magnetfeldsensor Cellular - nur auf Anfrage und MOQ erhältlich -

2. BM VERSIONEN - ELEKTRISCHES MAGNETFELDSENSOR

Die folgenden Informationen beziehen sich auf die Produktversionen (-BM) mit elektrischem Magnetfeldsensor.

2.1. ZUSÄTZLICHE SICHERHEITSHINWEISE

Die allgemeinen Sicherheitshinweise für das Produkt entnehmen Sie bitte der Betriebsanleitung für den Juno

Die folgenden Sicherheitshinweise beziehen sich auf die Produktversionen (-BM) mit elektrischem Magnetfeldsensor.

- Keine Montage an spannungsführenden oder heißen Bauteilen.
- Keine Installation in stark magnetisierten Bereichen (Permanentmagnete, Elektromagnete).
- Vor der Inbetriebnahme sicherstellen, dass das System spannungsfrei ist.
- Sensor darf nicht geöffnet oder modifiziert werden (Verlust der Kalibrierung)

Montagehinweise:

Empfohlener Montageort:

- Möglichst nahe am zu erfassenden Motor (<5 cm)
- Unmagnetische, vibrationsarme Oberfläche
- Sensor-Ausrichtung beliebig (3D-Erfassung), aber eine Achse möglichst radial zur Motorachse

Nicht montieren:

- Direkt auf ferromagnetischen Flächen oder dicken Stahlgehäusen (Abschirmung)
- Neben Netzleitungen oder großen Transformatoren

Befestigung:

• Schrauben, Clips oder Klebepad - vibrationsfest und thermisch entkoppelt.

2.2. TECHNISCHE FUNKTIONSWEISE

Der Betriebsstundenzähler nutzt Änderungen des Magnetfelds, die während des Betriebs einer Maschine oder eines Geräts entstehen, um Aktivitätsphasen automatisch zu erkennen.

Dabei wird ein **3-Achsen-Magnetfeldsensor**, der permanent oder periodisch das lokale Magnetfeld misst, eingesetzt.

Sobald eine charakteristische Magnetfeldänderung detektiert wird - z. B. durch das Einschalten eines Motors, durch rotierende Teile oder durch Stromfluss im Umfeld - interpretiert die Elektronik dies als "Betriebszustand aktiv".

Diese Aktivzeiten werden zeitlich integriert und ergeben die kumulierten **Betriebsstunden**.

- Der Sensor misst kontinuierlich die Magnetfeldkomponenten **Bx, By, Bz** in μT.
- Die Abtastrate kann dynamisch angepasst werden (z. B. 10 Hz bis 100 Hz), je nach gewünschter Reaktionszeit und Energieverbrauch.
- Der Mikrocontroller oder ein nachgeschalteter Signalprozessor analysiert die Rohdaten.
- Überwachung typischer Aktivitätsindikatoren:
 - o **Magnetfeldamplitudenänderung** über einem definierten Schwellwert
 - o **Frequenzanalyse** (z. B. periodische Schwankungen bei rotierenden Teilen)
 - o Rausch- oder Vibrationsmuster im Magnetfeldsignal
 - Erkennt das System über einen definierten Zeitraum ein konsistentes Aktivmuster, wird der Status auf "aktiv" gesetzt.
- Während des aktiven Zustands läuft ein Timer oder eine Zeitbasis (RTC oder MCU-intern).
- Die Laufzeit wird fortlaufend summiert und im **nichtflüchtigen Speicher** (EEPROM oder Flash) gesichert, sodass auch nach Stromverlust keine Daten verloren gehen.
- Kalibrierung / Störfeldkompensation:
 - o Eine initiale Kalibrierung kompensiert den lokalen Erdmagnetfeld-Offset.
 - Langfristige Drift oder externe Magnetfelder können über adaptive Filter korrigiert werden.
 - Optional kann der Zähler auch über ein Kalibriersignal (z. B. "known off state") neu justiert werden.

Anwendung	Erkennungsprinzip	Vorteil
Elektromotoren	Magnetfeldänderung durch Drehfeld	Kein zusätzlicher Stromsensor nötig
Ventile, Aktoren	Magnetfeld bei Spulenaktivierung	Direkte Aktivitätserkennung möglich
Maschinenaggregate	Magnetische Vibration / Feldfluktuation	Robust gegenüber Vibration und Lärm
Retrofit-Lösungen	Externe Magnetfeldänderung	Kontaktlos, einfache Nachrüstung

2.3. EINSATZMÖGLICHKEITEN UND ANWENDUNGSBEISPIELE

Elektromechanische Antriebe

Gerät / Komponente	Erfassungsprinzip	Bemerkung
Elektromotoren (DC/AC/BLDC)	Magnetfeldänderung durch Drehfeld oder Kommutierung	Standardanwendung, hohe Signalstabilität
Lichtmaschinen / Generatoren	Magnetisches Wechselfeld bei Stromerzeugung	Erkennung des Lade- oder Betriebszustands
Ventilatoren / Lüfter	Drehfeld oder magnetische Impulse	Laufzeitüberwachung, Wartungsintervallsteueru ng
Pumpen (elektrisch angetrieben)	Feldänderung durch Motorrotation	Kontaktlose Betriebsüberwachung
Kompressoren	Magnetfeldänderung im Antrieb	Einsatz in Kälte- und Drucklufttechnik möglich
Elektromagnet- kupplungen	Magnetfeld bei Aktivierung	Präzise Erfassung der Einschaltzyklen

Elektromagnetische Aktoren

Gerät / Komponente	Erfassungsprinzip	Bemerkung
Ventile (z. B. Magnetventile)	Magnetfeld der Spule bei Aktivierung	Exakte Schaltzeitenerfassung möglich
Relais / Schütze	Feldimpuls beim Anziehen der Spule	Zählung von Schaltzyklen
Hubmagnete / Linearantriebe	Feldänderung bei Bewegung	Nutzung in Industrieautomation oder Fahrzeugtechnik

Energieerzeugung & -verteilung

Gerät / Komponente	Erfassungsprinzip	Bemerkung	
Lichtmaschine	Induziertes Feld bei	Laufzeitdetektion ohne	
(Automotive)	Stromerzeugung	Eingriff in Bordnetz	
Transformatoren	Magnetische Streufelder bei Last	Kontaktlose Betriebsüberwachung möglich	
Wechselrichter / Umrichter	Feldänderung durch Induktionsspulen	Diagnose und Laufzeitüberwachung	

Haushalts- und Industriegeräte

Gerät / Komponente	Erfassungsprinzip	Bemerkung
Elektrowerkzeuge (Bohrmaschinen, Sägen etc.)	Magnetfeldänderung durch Motoraktivität	Nutzungszeittracking für Leihgeräte oder Wartung
Staubsauger / Gebläse / Heizlüfter	Drehfeld des Motors	Laufzeit- oder Wartungsüberwachung
Induktionsheizungen	Magnetisches Wechselfeld bei Aktivierung	Laufzeitmessung, Energieprotokollierung
Kühlaggregate / Klimaanlagen	Kompressorfeld + Lüfterfeld	Kombinierte Überwachung möglich

Fahrzeug- und Maschinenbau

Gerät / Komponente	Erfassungsprinzip	Bemerkung
Startergeneratoren / E-	Drehfeld oder Stromfluss	Betriebsdauer- und
Maschinen		Wartungszähler
Hydraulikpumpen mit	Magnetfeldänderung	Laufzeitüberwachung in
E-Antrieb	durch Motor	mobilen Maschinen
Förderbänder /	Magnetfeldänderung im	Laufzeit- oder
Antriebsrollen	Antrieb	Zyklenüberwachung
Land- und	Magnetfeld oder	Robust gegen
Baumaschinenaggregat	Vibrationssignatur	Umgebungseinflüsse
е		

Sonstige Anwendungen

Gerät / Komponente	Erfassungsprinzip	Bemerkung
Solarnachführsysteme	Magnetfeldänderung	Betriebsüberwachung
(Tracking Drives)	durch Motorbewegung	bei PV-Systemen
Windkraft-	Feldänderung bei	Betriebsstunden-Logging
Nebenantriebe (Yaw-	Motorbewegung	für Wartung
/Pitch-Systeme)		
Magnetlager /	Feldänderung bei	Laufzeitmessung von
Magnetbremsen	Aktivierung	Funktionszyklen

2.4. HINWEISE ZUR ANBRINGUNG

Die Stärke und Reichweite dieses Feldes hängen von mehreren Faktoren ab:

- Motortyp (DC, BLDC, Asynchron)
- Gehäusematerial (magnetisch oder nichtmagnetisch)
- Leistung und Stromfluss
- Schirmung / Einbauumgebung
- Position der Wicklungen und Magneten

Als kleine Orientierung (wir empfehlen immer die Montage direkt am Apparat, der überwacht werden soll, da das Störfeld von anderen Maschinen so minimiert wird):

Motortyp	Typische Feldstärke (aktiv)	Empfohlener Sensorabstand	Bemerkung
Kleinmotor (z. B. Lüfter, Ventilator, <100 W)	50-200 μT	5-20 mm	Direkte Nähe erforderlich, ggf. auf Motorgehäuse montieren
Mittlere Motoren (Pumpen, Kompressoren, 100 W- 2 kW)	100-500 μΤ	20-50 mm	Gute Erkennbarkeit, auch bei Montage an Gehäuseflansch
Große Industriemotoren (>2 kW)	500 µT - mehrere mT	50-150 mm	Montage auch auf benachbartem Chassis möglich
Magnetventile / Relais	200-1000 μT	0-10 mm	Sensor direkt an der Spule platzieren
Generator / Lichtmaschine	500 μT - 5 mT	20-100 mm	Ideal: Position mit minimaler Abschirmung (z. B. Enddeckel)

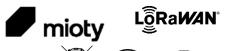
Empfohlener Montageort

- **Direkt am Motorgehäuse oder nahe der Wicklungen**, bevorzugt an einer ungeschirmten Stelle (nicht direkt hinter Stahlblech).
- **Nicht auf oder neben stromführenden Leitungen**, um Störfelder durch andere Quellen zu vermeiden.
- **Mechanisch stabil**, vibrationsarm und geschützt vor direkter Wärmeabstrahlung.
- Ausrichtung: Der Sensor misst 3D die Orientierung ist unkritisch, aber eine Achse sollte möglichst radial zum Motorfeld zeigen, um den größten Effekt zu erfassen.
- **Befestigung:** z. B. über Schraube, Clip oder doppelseitiges Klebepad mit thermischer Isolierung.

2.5. STÖREINFLÜSSE

Das Magnetfeld eines Motors nimmt mit zunehmender Entfernung **exponentiell bzw. nach 1/r³** (Dipolfeld) ab.

Das bedeutet:


Bereits wenige Zentimeter Abstand reduzieren das Signal eines Motors deutlich, während weiter entfernte Quellen kaum noch messbar sind.

Daraus folgt:

- Wenn der Sensor nah am Zielmotor (z. B. <5 cm) angebracht ist, ist der Einfluss anderer Maschinen praktisch vernachlässigbar.
- Entfernt sich der Sensor (>10 cm), kann das Nutzsignal schnell schwächer werden und stärkere externe Felder (z. B. von größeren Motoren oder Transformatoren) können sich überlagern.

3. KENNZEICHNUNG UND ZERTIFIZIERUNG

